Functions for the main pipeline
findInformSet()
Select the compartment specific genes
trainCS()
Wrapper to train compression matrix
bestDeconvolution()
Find cell-type gene signatures and do deconvolution
Functions for data-driven methods of estimating number of compartments
kaiser()
Kaiser method to determine number of important SVs
findNumberCells()
Select the number of cell types using SVD methods
Functions for Step 1 feature selection
vardecomp()
Select CTS genes with variance proporties
Functions for predictive modeling
TVMagic()
Elastic-net for compressed sensing
bigstatsenet()
Elastic-net for compressed sensing using bigstatsr
l1Magic()
Non-linear for compressed sensing
l2Magic()
lar()
Least angle regression for compressed sensing
trainCS_gene()
Functions for deconvolution
csDeCompress()
TOAST-NMF deconvolution
estimateUnmix()
Run unmix from DESeq2
linCor()
Use mutual linearity to find cell-type gene signatures and do deconvolution
nmfOut()
NMF function for TOAST
iterateSigs()
Use NMF repeatedly with TOAST framework to find cell-type gene signatures and do deconvolution
Functions for calculating error or expanding target
calculateError()
Find errors in estimated proportion matrix and signature
mseError()
expandTarget()
Expand targetted panel to larger feature space