Cross-validated Sparse Group LASSO with automatic alpha selection
multivariate_sgl_cv.RdRuns SGL over a grid of alpha values and selects the best combination of alpha and lambda via cross-validation.
Usage
multivariate_sgl_cv(
X,
Y,
alpha_seq = c(0.1, 0.5, 0.9),
nlambda = 15,
nfolds = 5,
verbose = FALSE,
seed = 123,
par = FALSE,
n.cores = 1
)Arguments
- X
matrix, design matrix of SNP dosages
- Y
matrix, matrix of G isoform expression across columns
- alpha_seq
numeric vector, sequence of alpha values to try
- nlambda
int, number of lambda values per alpha
- nfolds
int, number of CV folds
- verbose
logical
- seed
int, random seed
- par
logical, use parallel processing for CV folds
- n.cores
int, number of cores for parallel processing