Multivariate Sparse Group LASSO
multivariate_sgl.RdFits a sparse group LASSO model for multivariate isoform prediction. This method encourages both: - Group-level sparsity: same SNPs tend to affect multiple isoforms (shared effects) - Within-group sparsity: isoform-specific effects
Usage
multivariate_sgl(
X,
Y,
alpha = 0.5,
nlambda = 20,
lambda_min_ratio = 0.01,
nfolds = 5,
standardize = FALSE,
verbose = FALSE,
seed = 123,
par = FALSE,
n.cores = 1
)Arguments
- X
matrix, design matrix of SNP dosages
- Y
matrix, matrix of G isoform expression across columns
- alpha
numeric, mixing parameter between group and individual sparsity (0-1) alpha=1 is pure LASSO, alpha=0 is pure group LASSO
- nlambda
int, number of lambda values to try
- lambda_min_ratio
numeric, ratio of lambda_min to lambda_max
- nfolds
int, number of CV folds
- standardize
logical, standardize X before fitting
- verbose
logical
- seed
int, random seed
- par
logical, use parallel processing for CV folds
- n.cores
int, number of cores for parallel processing