trainDeP.RdThe function trains a predictive model of a given gene using top mediators as fixed effects and assesses in-sample performance with cross-validation.
trainDeP( geneInt, snps, snpLocs, mediator, medLocs, covariates, cisDist = 5e+05, qtlTra, qtMed, h2Pcutoff, dimNumeric, verbose, seed, sobel = F, nperms = 1000, k, parallel, parType = "no", prune, windowSize = 50, numSNPShift = 5, ldThresh = 0.5, cores, qtlTra_parts, qtMed_parts, modelDir, snpAnnot = NULL )
| geneInt | character, identifier for gene of interest |
|---|---|
| snps | data frame, SNP dosages |
| snpLocs | data frame, MatrixEQTL locations for SNPs |
| mediator | data frame, mediator intensities |
| medLocs | data frame, MatrixEQTL locations for mediators |
| covariates | data frame, covariates |
| h2Pcutoff | numeric, P-value cutoff for heritability |
| seed | integer, random seed for splitting |
| k | integer, number of training-test splits |
| parallel | logical, TRUE/FALSE to run glmnet in parallel |
| prune | logical, TRUE/FALSE to LD prune the genotypes |
| windowSize | integer, window size for PLINK pruning |
| numSNPShift | integer, shifting window for PLINK pruning |
| ldThresh | numeric, LD threshold for PLINK pruning |
| cores | integer, number of parallel cores |
| qtlFull | data frame, all QTLs (cis and trans) between mediators and genes |
| numMed | integer, number of top mediators to include |
| outputAll | logical, include mediator information |
final model for gene along with CV R2 and predicted values